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On integrable potential perturbations of the Jacobi
problem for the geodesics on the ellipsoid
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Abstract. All integrable mechanical systems describing motion of a particle on an ellipsoid
surface in three-dimensional space are described in the class of the Loran polynomial potentials.
Two countable families of the basic solutions are obtained. Explicit formulae are given. The
limit, when the considered system goes into the billiard system within an ellipse, is analysed,
and the results are compared with those obtained previously, in relation to the billiard system.

1. Introduction

Completely integrable Hamiltonian systems are very rare but also very important. One of
the most celebrated examples is the system describing a particle moving under inertia on an
ellipsoid. In more geometrical language, it is the problem of the geodesics on the ellipsoid.
As is well known, Jacobi proved the integrability of this system by introducing elliptical
coordinates in which the equations of motion were separated.

Investigation of the integrability of perturbations of that system started with Jacobi
himself, and since then few solutions have been found (see [1, 2] and the bibliography
given therein).

In a recent paper on the subject [3], Kozlov proved the integrability of then-dimensional
problem with the addition of a potential force with the following potential:

V = k

2

n∑
s=0

x2
s +

n∑
r=0

αr

x2
r

. (1)

In particular, he analysed the case of the ellipsoid inR3. Let us recall that in the limit,
when the smallest axis goes to zero, the geodesics go into billiard trajectories within an
ellipse. Kozlov investigated the limit of the above potentials and obtained the integrable
billiards within an ellipse.

Using these ideas we have found a countable family of integrable potentials of the
billiard system in [4]. In this paper we extend the family (1) of integrable potentials in the
case of the ellipsoid inR3. We give explicit formulae for two countable families of the
basic solutions. Then we compare the limit of these families with the solutions obtained in
[4] for the billiard case.
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2. The basic equations of Kozlov’s method

Let us recall that an-dimensional Hamiltonian system is completely integrable if it hasn

functionally independent integrals of motion that are in involution. Since the systems we
consider here are two-dimensional, it is enough to prove the existence of only one integral,
independent of the Hamiltonian (see [5]).

The system of a particle moving under inertia on the ellipsoid

x2

a
+ y2

b
+ z2

c
= 1 (2)

has an additional integral of motion, found by Joahimstal [3],

I =
(

x2

a2
+ y2

b2
+ z2

c2

) (
ẋ2

a
+ ẏ2

b
+ ż2

c

)
.

If the system is moving under the influence of a force with potentialV the equations of
motion are

ẍ = λx/a − Vx ÿ = λy/b − Vy z̈ = λz/c − Vz (3)

whereλ can be determined from(
x2

a2
+ y2

b2
+ z2

c2

)
λ = x

a
Vx + y

b
Vy + z

c
Vz − ẋ2

a
− ẏ2

b
− ż2

c
.

Kozlov’s idea was to analyse whether equations (3) allow an integralF of the form

F = I + f

wheref is a function depending only on the coordinates. From the conditionḞ = 0, which
is equivalent to

2
(x

a
Vx + y

b
Vy + z

c
Vz

) (
xẋ

a2
+ yẏ

b2
+ zż

c2

)
− 2

(
x2

a2
+ y2

b2
+ z2

c2

)
×

(
ẋ

a
Vx + ẏ

b
Vy + ż

c
Vz

)
+ fxẋ + fyẏ + fzż = 0

he derived the system of three partial differential equations

2
(x

a
Vx + y

b
Vy + z

c
Vz

) x

a2
− 2

(
x2

a2
+ y2

b2
+ z2

c2

)
Vx

a
= −fx

2
(x

a
Vx + y

b
Vy + z

c
Vz

) y

b2
− 2

(
x2

a2
+ y2

b2
+ z2

c2

)
Vy

b
= −fy

2
(x

a
Vx + y

b
Vy + z

c
Vz

) z

c2
− 2

(
x2

a2
+ y2

b2
+ z2

c2

)
Vz

c
= −fz. (4)

We are going to study the solutions of the corresponding system of compatibility
conditions for equations (4),(

x2

a2
+ y2

b2
+ z2

c2

)
Vxy

a − b

ab
− 3

y

b2

Vx

a
+ 3

x

a2

Vy

b
+

(
x2

a3
− y2

b3

)
Vxy

+xy

ab

(
Vyy

a
− Vxx

b

)
+ zx

ca2
Vzy − zy

cb2
Vzx = 0
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x2

a2
+ y2

b2
+ z2

c2

)
Vyz

b − c

bc
− 3

z

c2

Vy

b
+ 3

y

b2

Vz

c
+

(
y2

b3
− z2

c3

)
Vyz

+yz

bc

(
Vzz

b
− Vyy

c

)
+ xy

ab2
Vxz − xz

ac2
Vxy = 0(

x2

a2
+ y2

b2
+ z2

c2

)
Vzx

c − a

ac
− 3

x

a2

Vz

c
+ 3

z

c2

Vx

a
+

(
z2

c3
− x2

a3

)
Vzx

+xz

ac

(
Vxx

c
− Vzz

a

)
+ zy

c2b
Vxy − yx

ba2
Vyz = 0 (5)

in the form of the Loran polynomials:

V (x, y, z) =
∑

r>n,m,p>s

am,n,p(λ)xnymzp s, r ∈ R. (6)

By putting (6) into (5) we get the system of difference equations:

am−2,n,p

(
n

a2

(
m + n

b
+ p

c

))
− am,n−2,p

(
m

b2

(
m + n

a
+ p

c

))
= mnam,n,p−2

b − a

c2ab

am,n−2,p

(
p

b2

(
n + p

c
+ m

a

))
− am,n,p−2

(
n

c2

(
n + p

b
+ m

a

))
= npam−2,n,p

c − b

a2cb

am−2,n,p

(
p

a2

(
m + p

c
+ n

b

))
− am,n,p−2

(
m

c2

(
m + p

a
+ n

b

))
= mpam,n−2,p

c − a

b2ca
. (7)

Lemma 1. System (7) with variablesam−2,n,p, am,n−2,p andam,n,p−2 is singular for arbitrary
m, n, p, a, b, c.

Let us call thelevel of the elementam,n,p the summ + n + p, and thedegreeof the
elementam,n,p of the fixed level the summ + n.

Lemma 2. Among the nonzero elements of the fixed level of the minimal degree hasam,n,p

with m = 0 or n = 0.

Lemma 3. If m0, p are such thatm0 6= 0 andam0,0,p is the nonzero element of the minimal
degree of the levelk = m0 + p for generala, b, c thenk = −2.

From now on, we will assumea 6= b 6= c.

3. The case m0 6= 0

If m0 6= 0 then according to lemma 3 the nonzero elements are of level−2.

Lemma 4. (a)

am0,2k,−m0−2−2k = (−1)k
ck(c − a)k

bk(b − a)k

∏k
i=1(m0 + 2i)∏k

i=1 2i
am0,0,−m0−2

(b)

m0 = −2k, k ∈ N.
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We shall call the potentialone parametricif only one of the elementsam,0,p is different
from zero.

Example 1. The simplest new integrable potential has the formula

W̃2(x, y, z, α) = αx−4z2 + c(c − a)

b(b − a)
αx−4y2.

In order to describe one-parametric solutions we introduce the following function:

K(m0, 2n) = 1 K(m0 + 2, 2n) = n n > 2

and by induction

K(m0 + 2k, 2n) =
n∑

s=k−1

K(m0 + 2(k − 1), 2s).

Some elementary combinatorics gives us

Lemma 5. The functionK defined above has the following expression:

K(m0 + 2k, 2n) =
(

n + k − 1
k

)
.

Now, we have

Theorem 1. The general formula for the elements of one parametric solutions with
am0,0,−m0−2 = α is

am0+2k,2s,−m0−2−2(k+s) = (−1)s
(

s + k − 1
k

)
× ck+s(c − a)s(c − b)k

∏k+s
i=1(m0 + 2i)

bkas(b − a)k+s
∏s

i=1 2i
∏k

j=1(m0 + 2j)

wherek 6 s, andm0 + 2(k + s) < 0.

Example 2. Using the above formula we give a more complicated integrable potential:

W̃3(x, y, z, α) = αx−6z4 + 2α
c(c − a)

b(b − a)
x−6y2z2

+α
c2(c − a)2

b2(b − a)2
x−6y4 + α

c2(c − a)(c − b)

ab(b − a)2
x−4y2.

4. The case m0 = 0

If the nonzero element of the smallest degree is of the forma0,0,p it is easy to find the
general formula for the nonzero elements. It is given in the next theorem.

Theorem 2. If a0,0,p is the nonzero element of the smallest degree thenp = 2k, k ∈ N ,
and

a2i,2j,2k−2(i+j) = k!

i!j !(k − i − j)!
(c/a)i(c/b)ja0,0,2k i + j 6 k.

Example 3.

W̃ ′
2 = α

c2

a2
x4 + α

c2

b2
y4 + αz4 + 2α

c

a
x2z2 + 2α

c2

ab
x2y2 + 2α

c

b
y2z2.

Finally, we get

Theorem 3. Solutions of the form (6) of the system (5) are the linear combinations of the
solutions described in theorems 1 and 2.
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5. The billiard potentials as a limit of the Jacobi potentials

It is well known [6] that in the limit when the smallest axisc goes to zero, the considered
system goes into the billiard system within an ellipse. In a previous work ([4]) we described
potential perturbations of this system, in the class of the Loran polynomials. (Some other
integrable perturbations of the system were given in [7, 8].) Now we want to illustrate the
correspondence between solutions obtained here and those from ([4]).

Let us expressz in terms ofx, y from the ellipsoid equation (2),

z2 = c

(
1 − x2

a
− y2

b

)
and insert it in the potential given in example 1:

W̃2(x, y, c) = αcx−4

(
1 − x2

a
− y2

b

)
+ α

c(c − a)

b(b − a)
x−4y2.

By computing the limit we obtain

lim
c→0

W̃2(x, y, c)/c = αx−4 + α
x−4y2

a − b
− α

a
x−2

= W2(x, y, α) + W1

(
x, y,−α

a

)
whereW2, W1 are integrable potential perturbations of the billiard system within an ellipse,
obtained in [4] and [3], respectively.
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